Part Number Hot Search : 
TDA1549 XVC5002 100KL A3P060 BUF642 FQD9N08L 04021 BJ100
Product Description
Full Text Search
 

To Download IRF1010ZSTRRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 hexfet ? power mosfet v dss = 55v r ds(on) = 7.5m i d = 75a this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely lowon-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free features irf1010zpbf irf1010zspbf irf1010zlpbf d 2 pak irf1010zspbf to-220ab irf1010zpbf to-262 irf1010zlpbf absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm p u l se d d ra i n c urrent p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) si n gl e p u l se a va l anc h e e ner gy  mj e as (tested ) si n gl e p u l se a va l anc h e e ner gy t este d v a l ue  i ar a va l anc h e c urrent  a e ar r epet i t i ve a va l anc h e e ner gy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw  thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.11 c/w r cs case-to-sink, flat greased surface  0.50 CCC r ja junction-to-ambient  CCC 62 r ja junction-to-ambient (pcb mount)  CCC 40 180 130 see fig.12a, 12b, 15, 16 140 0.90 20 max. 9466 360 75 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) pd - 95361a downloaded from: http:///

 2 www.irf.com electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 55 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.049 CCC v/c r ds(on) static drain-to-source on-resistance CCC 5.8 7.5 m v gs(th) gate threshold voltage 2.0 CCC 4.0 v gfs forward transconductance 33 CCC CCC s i dss drain-to-source leakage current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 200 na gate-to-source reverse leakage CCC CCC -200 q g total gate charge CCC 63 95 q gs gate-to-source charge CCC 19 CCC nc q gd gate-to-drain ("miller") charge CCC 24 CCC t d(on) turn-on delay time CCC 18 CCC t r rise time CCC 150 CCC t d(off) turn-off delay time CCC 36 CCC ns t f fall time CCC 92 CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from package and center of die contact c iss input capacitance CCC 2840 CCC c oss output capacitance CCC 420 CCC c rss reverse transfer capacitance CCC 250 CCC pf c oss output capacitance CCC 1630 CCC c oss output capacitance CCC 360 CCC c oss eff. effective output capacitance CCC 560 CCC source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current CCC CCC 75 (body diode) a i sm pulsed source current CCC CCC 360 (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 22 33 ns q rr reverse recovery charge CCC 15 23 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 10v  v dd = 28v i d = 75a r g = 6.8 t j = 25c, i s = 75a, v gs = 0v  t j = 25c, i f = 75a, v dd = 25v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 75a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 25v, i d = 75a i d = 75a v ds = 44v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v downloaded from: http:///

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c    


 
    
  0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c    


 
    
  4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 20s pulse width 0 2 04 06 08 0 i d, drain-to-source current (a) 0 20 40 60 80 100 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 20s pulse width downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 2 04 06 08 01 0 0 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v i d = 75a 0.2 0.6 1.0 1.4 1.8 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc downloaded from: http:///

 6 www.irf.com q g q gs q gd v g charge  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j )       -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1k vcc dut 0 l downloaded from: http:///

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 75a 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 downloaded from: http:///

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets  !" ? #$!"  ? !%"  ? #"&'"$!"  " ()" p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ? !*+!%%"!,-  ? *" )"."  /  ? $  %%"!,011 ?  /  2"*"/!""    v ds 90%10% v gs t d(on) t r t d(off) t f   % "3!4 1 5 0 0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///

 www.irf.com 9 

 
 

   
      
   international part number rectifier lot code as s e mb l y logo year 0 = 2000 dat e code we e k 19 line c lot code 1789 example: this is an irf1010 note: "p" in assembly line position i ndicates "l ead - f ree" in the assembly line "c" assembled on ww 19, 2000 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 10 www.irf.com  


 
 dat e code ye ar 0 = 2000 week 02 a = as s e mb l y s it e code rectifier internat ional part number p = designates lead - free product (opt ional) f530s in the assembly line "l" as s e mb l e d on ww 02 , 20 0 0 this is an irf530s with lot code 8024 international logo rect if ie r lot code as s e mb l y year 0 = 2000 part number dat e code line l week 02 or f 530s logo assembly lot code  


  
      
   notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 www.irf.com 11 to-262 part marking information to-262 package outlinedimensions are shown in millimeters (inches) logo rect ifier internat ional lot code as s e mb l y logo rectifier int ernational dat e code week 19 ye ar 7 = 1997 part number a = assembly site code or product (optional) p = de s i gnat e s l e ad- f r e e e xample : t his is an irl3103l lot code 1789 assembly part numb e r dat e code week 19 line c lot code ye ar 7 = 1997 as s e mble d on ww 19, 1997 in the assembly line "c" notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 12 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2010   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.05mh r g = 25 , i as = 75a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . 
  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.   this value determined from sample failure population. 100% tested to this value in production.  this is only applied to to-220ab pakcage.  this is applied to d 2 pak, when mounted on 1" square pcb (fr- 4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.      
             

 ! 
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF1010ZSTRRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X